For food testing purposes
FOR IN VITRO USE ONLY

foodproof® Salmonella Detection Kit
- 5’Nuclease -

Version 4, March 2017

PCR system for the qualitative detection of Salmonella DNA using real-time PCR instruments

Order No. R 302 27
PCR system for 96 reactions for a maximum of 94 samples

Order No. R 302 27 L
PCR system for 480 reactions for a maximum of 470 samples

Store the PCR kit at -15 to -25 ºC
Table of Contents

1. What this Product Does .. 4
 - Number of Tests ... 4
 - Storage and Stability ... 4
 - Kit Contents ... 4
 - Additional Equipment and Reagents Required ... 5
 - Applicability Statement .. 5

2. How to Use this Product ... 6
 2.1 Before You Begin .. 6
 - Precautions .. 6
 - Waste Disposal .. 6
 - Sample Material ... 6
 - Enrichment ... 6
 - DNA-Extraction .. 6
 - Positive Control ... 7
 - Negative Control .. 7
 2.2 Procedure ... 8
 - Program Setup .. 9
 - Preparation of the PCR Mix ... 9
 2.3 Data Interpretation ... 9

3. Troubleshooting ... 10

4. Additional Information on this Product .. 11
 - How this Product Works ... 11
 - Test Principle .. 11
Table of Contents

- Prevention of Carry-Over Contamination ... 11
- Background Information ... 12
- Product Specifications ... 12
- References .. 12
- Quality Control ... 12
- Supplementary Information ... 13
 - Ordering Information .. 13
 - License Notice ... 13
 - Trademarks .. 14
 - Contact and Support ... 14
- Change Index ... 14
1. What this Product Does
Number of Tests
The detection system is designed for 96 reactions or 480 reactions respectively with a final reaction volume of 25 µl each. Up to 94 or 470 samples (single sample preparation) plus positive and negative control reactions can be analyzed per run.

Storage and Stability
- Store the kit at –15 to –25 ºC through the expiration date printed on the label.
- Once the kit is opened, store the components as described in the following Kit Contents table:

Kit Contents

<table>
<thead>
<tr>
<th>Vial / Cap Color</th>
<th>Label</th>
<th>Contents / Function / Storage</th>
</tr>
</thead>
</table>
| 1 yellow cap | foodproof® Salmonella Master Mix | R 302 27: 3 x 600 µl
- Ready-to-use primer and Hydrolysis Probe mix specific for Salmonella DNA and the Salmonella-specific Internal Control (IC).
- For amplification and detection of Salmonella-specific sequences.
- Store at -15 to -25 ºC.
- Avoid repeated freezing and thawing!
- Protect from light! |
| 2 red cap | foodproof® Salmonella Enzyme Solution | R 302 27/27L: 5 x 96 µl
- Contains Taq DNA Polymerase and Uracil-DNA Glycosylase (heat labile) for prevention of carry-over contamination.
- Store at -15 to -25 ºC.
- After first thawing store at +2 ºC to +8 ºC for up to one month. |
| 3 white cap | foodproof® Salmonella Internal Control | R 302 27/27L: 5 x 96 µl
- Contains a stabilized solution of plasmid DNA and a yellow dye for better visualization.
- For use as an internal amplification control.
- Store at -15 to -25 ºC.
- After first thawing store at +2 ºC to +8 ºC for up to one month. |
| 4 purple cap | foodproof® Salmonella Control Template | R 302 27/27L: 1 x 150 µl
- Contains a stabilized solution of plasmid DNA.
- For use as a PCR run positive control.
- Store at -15 to -25 ºC.
- After first thawing store at +2 ºC to +8 ºC for up to one month. |
| 5 colorless cap | H₂O, PCR-grade | R 302 27/27L: 1 x 1 ml
- Nuclease-free, PCR-grade H₂O.
- For use as a PCR run negative control.
- Store at -15 to -25 ºC. |
Additional Equipment and Reagents Required

- real-time PCR instruments with a FAM and a VIC/HEX detection channel
- real-time PCR compatible tubes, strips or plates with optical cap or foil applicable for the PCR-cycler in use
- foodproof® ShortPrep I* (Order No. S 400 01)
- or foodproof® StarPrep One Kit* (Order No. S 400 07 or S 400 07L)
- or foodproof® Sample Preparation Kit I* (Order No. S 400 04)
- or foodproof® Magnetic Preparation Kit V* (Order No. S 400 19)
- Nuclease-free, aerosol-resistant pipette tips
- Pipettes
- Sterile reaction tubes for preparing PCR mixes and dilutions

* Available from BIOTECON Diagnostics; see Ordering Information

Applicability Statement

The foodproof® Salmonella Detection Kit is intended for the rapid detection of Salmonella DNA isolated from enrichment cultures prepared by valid methods and inoculated with all kinds of foods that are potentially contaminated with Salmonella.

The foodproof® Salmonella Detection Kit - Hybridization Probes (LightCycler® 1.1, 2.0) is AOAC-RI and NordVal validated for a variety of foods including: chicken breast, cocoa powder, coconut, cumin, dough, dry pet food, egg powder, food dye, Frankfurter sausage, ice cream, Lyoner sausage, milk chocolate, milk powder and minced meat. The foodproof® Salmonella Detection Kit has been MicroVal validated by RIVM in combination with the foodproof Enterobacteriaceae plus E. sakazakii Detection Kit and the foodproof® StarPrep One Kit using the ISO 6579 reference method for powdered infant formula, probiotic culture powders/pre-blends and ingredients. For probiotics-containing samples and sugar specific enrichment procedures are necessary. For further information please refer to MicroVal Certificate No. 2011SA39.

In a harmonized MicroVal/AOAC-RI validation the kit has been validated in combination with the foodproof® Magnetic Preparation Kit I (S 400 11) for automated sample preparation and the foodproof® StarPrep One Kit (S 400 07) for manual sample preparation with a variety of foods: beef meat, chocolate and bakery products, egg products, feed samples, meat and meat products, milk and dairy products and primary production samples.

The detection kit must not be used in diagnostic procedures.

The kit described in this Instruction Manual has been developed for real-time PCR instruments with a FAM and a VIC/HEX detection channel. The performance of the kit was tested with the following real-time PCR instruments: LightCycler® 480 (Roche Diagnostics), ABI 7500 and StepOnePlus (Applied Biosystems), Mx3005P® QPCR System (Stratagene), iQ5 Real-Time PCR Detection System (Bio-Rad), Rotor-Gene 6000 (Corbett Life Science) and MasterCycler ep realplex® (Eppendorf).
2. How to Use this Product

2.1 Before You Begin

Precautions
Detection of Salmonella DNA using the foodproof® Salmonella Detection Kit requires DNA amplification by PCR. The detection kit provides all the reagents required for the PCR. In order to achieve reliable results, the entire assay procedure must be performed under nuclease-free conditions. Follow the instructions below to avoid nuclease-, carry-over-, or cross-contamination:

- Prepare appropriate aliquots of the solutions and keep them separate from other reagents in the laboratory.
- Use nuclease-free labware (e.g., pipettes, pipette tips, reaction vials).
- Wear gloves when performing the assay.
- To avoid cross-contamination of samples and reagents, use fresh aerosol-preventive pipette tips.
- To avoid carry-over contamination, transfer the required solutions for one experiment into a fresh tube, rather than directly pipetting from stock solutions.
- Physically separate the workplaces for DNA preparation, PCR-setup, and PCR to minimize the risk of carry-over contamination. Use a PCR-hood for all pipetting steps.

Keep the foodproof® Salmonella Master Mix (vial 1, yellow cap) away from light.

Waste Disposal
Place any waste and biohazard material potentially contaminated with pathogenic bacteria in an appropriate plastic Contaminated Waste bag and label as follows: CONTAMINATED Waste, Room number, date and initials. The bag should be autoclaved and then disposed of according to local regulations.

Sample Material
Use any sample material suitable for PCR in terms of purity, concentration, and absence of inhibitors. For preparation of genomic DNA from raw material or from food enrichments, refer to the corresponding product package inserts of a suitable sample preparation kit (see “Additional Equipment and Reagents Required”).

Enrichment
Pre-enrichment broth and temperature according to ISO 6579 or BAM (Chapter 5) or USDA for 20 +/- 2 h. Subcultivation 1/10 in pre-warmed brain heart infusion broth (e.g. 1 ml sample + 9 ml broth) for 3 h at 37 °C. Other suitable, validated enrichment procedures can also be used.

DNA-Extraction
BIOTECON Diagnostics provides sample preparation kits for all kind of foods and raw materials (see “Additional Equipment and Reagents Required”). For more product information please refer to www.bc-diagnostics.com.
Positive Control
Always run a positive control with the samples. To prepare a positive control, replace the template DNA with the provided control DNA [foodproof® Salmonella Control Template (vial 4, purple cap)] or with a positive sample preparation control.

Negative Control
Always run a negative control with the samples. To prepare a negative control, replace the template DNA with H₂O, PCR-grade (vial 5, colorless cap). Include a negative control during sample preparation to monitor reaction purity and cross-contamination. This extraction control can be used as an additional negative control reaction.

Cultural Confirmation
Presumptive positive PCR results should be confirmed with cultural confirmation methods e.g. recommended by the ISO 6579 reference method or by BAM (Bacteriological Analytical Manual Online, Chapter 5. Salmonella, Andrews H.W., Hammack S.T., December 2007 Edition), e.g., serologically by latex agglutination (Salmonella Test Kit, Oxoid DR1108A) and biochemically by using API 20E strips (bioMerieux 20100) or. For further information please visit the following web addresses: www.iso.org, www.cfsan.fda.gov/~ebam/bam-5.html.
2.2 Procedure

Program Setup

Program PCR instrument before preparing the reaction mixes. The amplification is carried out according to the following temperature-time-program (for details on how to program the experimental protocol, see the operation manual of your real-time PCR cycler):

Pre-incubation

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>37 ºC</td>
<td>4 minutes</td>
</tr>
<tr>
<td>Step 2</td>
<td>95 ºC</td>
<td>5 minutes</td>
</tr>
</tbody>
</table>

Amplification

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>95 ºC</td>
<td>5 seconds</td>
</tr>
<tr>
<td>Step 2</td>
<td>60 ºC</td>
<td>60 seconds</td>
</tr>
</tbody>
</table>

* Fluorescence detection in step 2

For some real-time PCR instruments the type of the probe quencher as well as the usage of a passive reference dye has to be specified. The foodproof® Salmonella Detection Kit contains probes with TAMRA as quencher and no passive reference dye.

Preparation of the PCR Mix

Proceed as described below to prepare a 25 µl standard reaction. Always wear gloves when handling the PCR vessels.

1. Thaw the solutions and, for maximal recovery of contents, briefly spin vials in a microcentrifuge before opening. Mix carefully but thoroughly by pipetting up and down.
2. In a reaction tube (0.5 – 2.0 ml, depending on the number of reactions), prepare the PCR Mix by adding the following components in the order mentioned below:

The volumes indicated below are based on a single 25 µl standard reaction. Prepare the PCR mix by multiplying the amount in the “Volume” column by the number of reactions to be cycled plus one or two additional reactions to cover pipetting losses.
3. Mix carefully but thoroughly by pipetting up and down. Do not vortex.
 • Pipet 20 µl PCR mix into each PCR vessel.
 • For the samples of interest, add 5 µl sample DNA.
 • For the negative control, add 5 µl H₂O PCR-grade (vial 5, colorless cap).
 • For the positive control, add 5 µl foodproof® Salmonella Control Template (vial 4, purple cap).
4. Seal the PCR vessels accurately with optical caps or foil.
5. Briefly spin the PCR vessels in a suitable centrifuge.
6. Cycle the samples as described above.

2.3 Data Interpretation

The amplification of DNA of Salmonella is analyzed in the fluorescence channel suitable for FAM labeled probes detection. The specific amplification of the Internal Control is analyzed in the fluorescence channel suitable for VIC/HEX. Compare the results from channel FAM (Salmonella) and channel VIC/HEX (Internal Control) for each sample, and interpret the results as described in the table below.

<table>
<thead>
<tr>
<th>Salmonella spp. Channel FAM</th>
<th>Internal Control Channel VIC/HEX</th>
<th>Result Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>Negative</td>
<td>Negative</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

Note: A prerequisite for the unambiguous discrimination of Salmonella DNA and Internal Control DNA in this dual-color experiment is a suitable calibration of the PCR instrument for channels FAM and VIC/HEX. Please refer to the operation manual of your real-time PCR cycler for further information.
3. Troubleshooting

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible Reason</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No signal increase is observed, even with positive controls.</td>
<td>Incorrect detection channel has been chosen.</td>
<td>Set Channel settings to FAM or VIC/HEX.</td>
</tr>
<tr>
<td></td>
<td>Pipetting errors or omitted reagents.</td>
<td>Check for correct pipetting scheme and reaction setup. Repeat the PCR run.</td>
</tr>
<tr>
<td></td>
<td>No data acquisition programmed.</td>
<td>Check the cycle programs.</td>
</tr>
<tr>
<td>No signal increase in channel VIC/HEX.</td>
<td>Inhibitory effects of the sample material (e.g., caused by insufficient purification).</td>
<td>Use the recommended DNA sample preparation kit to purify template DNA. Dilute samples or pipet a lower amount of sample DNA (e.g., 2.5 µl instead of 5 µl, substitute with H$_2$O, PCR-Grade). Perform a sub-cultivation of the enrichment culture (e.g., 1:10 in brain heart infusion broth or selective media) to dilute the portion of food matrix in the sample.</td>
</tr>
<tr>
<td>Fluorescence intensity is too low.</td>
<td>Inappropriate storage of kit components.</td>
<td>Store the foodproof® Salmonella Master Mix (vial 1, yellow cap) at -15 ºC to -25 ºC, protected from light. Avoid repeated freezing and thawing.</td>
</tr>
<tr>
<td></td>
<td>foodproof® Salmonella Master Mix (vial 1, yellow cap) is not homogeneously mixed.</td>
<td>Mix the foodproof® Salmonella Master Mix (vial 1, yellow cap) thoroughly before pipetting.</td>
</tr>
<tr>
<td></td>
<td>Low initial amount of target DNA.</td>
<td>Increase the amount of sample DNA. Depending on the chosen DNA isolation method, inhibitory effects may occur.</td>
</tr>
<tr>
<td>Negative control samples are positive.</td>
<td>Carry-over contamination.</td>
<td>Exchange all critical solutions. Repeat the complete experiment with fresh aliquots of all reagents. Always handle samples, kit components and consumables in accordance with commonly accepted practices to prevent carry-over contamination. Add positive controls after sample and negative control reaction vessels have been sealed.</td>
</tr>
<tr>
<td>Fluorescence intensity varies.</td>
<td>Insufficient centrifugation of the PCR vessels. Prepared PCR mix is still in the upper part of the vessel.</td>
<td>Always centrifuge reaction vessels.</td>
</tr>
<tr>
<td></td>
<td>Outer surface of the vessel or seal is dirty (e.g., by direct skin contact).</td>
<td>Always wear gloves when handling the vessel and seal.</td>
</tr>
</tbody>
</table>
4. Additional Information on this Product

How this Product Works

The foodproof® Salmonella Detection Kit provides primers and Hydrolysis Probes (for sequence-specific detection), convenient premixed reagents, and a control template for reliable interpretations of results. To ensure maximum reliability of the detection system and to prevent misinterpretation of negative results due to inhibition of the amplification, an Internal Control (IC) is supplied (vial 3, white cap). The IC has to be added to each reaction. A Hydrolysis Probe was designed to bind specifically to the IC, allowing detection in the VIC/HEX channel, whereas the Salmonella DNA is detected in the FAM channel. In case of a negative result due to inhibition of amplification by the sample DNA of interest, the amplification of the IC is suppressed as well. Whereas a negative result for the sample DNA of interest and amplification of the IC clearly indicates the absence of Salmonella DNA in the sample.

The foodproof® Salmonella Detection Kit minimizes contamination risk and contains all reagents needed for detection of Salmonella DNA. Primers and probes provide specific detection of Salmonella DNA in food samples. The kit described in this Instruction Manual has been developed for real-time PCR instruments with a FAM and a VIC/HEX detection channel.

Test Principle

1. Using the supplied sequence-specific primers in a polymerase chain reaction (PCR), the PCR instrument and its associated reagents amplify and simultaneously detect fragments of Salmonella genomic DNA.
2. The PCR instrument detects these amplified fragments in real time through fluorescence generated by cleavage of the hybridized probe due to the 5′-nuclease activity of the Taq DNA polymerase. The probe is labeled at the 5′-end with a reporter fluorophore and at the 3′-end with a quencher.
3. During the annealing/elongation phase of each PCR cycle, the probe hybridizes to an internal sequence of the amplicon downstream from one of the primer sites and is cleaved by the 5′-nuclease activity of the Taq DNA polymerase. This cleavage of the probe separates the reporter dye from the quencher dye, increasing the reporter dye signal.
4. The real-time PCR instrument measures the emitted fluorescence of the reporter dye.

Prevention of Carry-Over Contamination

The heat-labile Uracil-DNA Glycosylase (UNG) is suitable for preventing carry-over contamination between PCRs. This technique relies on the incorporation of deoxyuridine triphosphate (dUTP) during all amplification reactions, and the pretreatment of all successive PCR mixtures with the heat-labile UNG. The UNG cleaves DNA at any site where a deoxyuridine residue has been incorporated. The resulting abasic sites are hydrolyzed due to the high temperatures during the initial denaturation step, and can no longer serve as PCR templates. The heat-labile UNG is inactivated during the initial denaturation step. Native DNA (e.g., the isolated Salmonella genomic DNA) does not contain uracil and is therefore not degraded by this procedure. Since dTTP is replaced with dUTP and UNG is included in the foodproof® Salmonella Detection Kit, decontamination can be achieved with the provided reagents.
Background Information
The genus *Salmonella*, member of the *Enterobacteriaceae* family, comprises the two species *S. enterica* and *S. bongori*. Only *S. enterica* with its six subspecies is of clinical relevance for humans. The genus is sub-divided into more than 2,000 serovars defined by somatic and flagellar antigens, and most, if not all, of these serovars are considered pathogenic to animals and humans. *S. enterica* is the most frequent cause of diarrheal illness in adults [1]. *Salmonellae* are usually transmitted to humans by eating contaminated food, which is often of animal origin, such as beef, poultry, milk, or eggs. However, any food, including vegetables, may become contaminated. Since conventional microbiological methods for the detection and identification of *Salmonella* are very time-consuming, PCR has been introduced to the food industry as a highly sensitive and specific detection method [2, 3]. Today approved methods exist for the detection of *Salmonella* using polymerase chain reaction (PCR).

Product Specifications
Specificity:
The foodproof® *Salmonella* Master Mix is sequence-specific for a highly conserved gene found in all subgroups of *Salmonella*. Inclusivity has been tested in several internal and external studies (AOAC-RI, MicroVal and NordVal) with more than 650 strains of *Salmonella* comprising all species and subspecies whereas all of them could be detected (100% inclusivity). Exclusivity was determined during the above mentioned studies using 60 species of closely related organisms or organisms occurring in the same habitat.

Sensitivity:
A relative detection limit of 1 to 10 cells per 25 g sample can be achieved with all kinds of foods after enrichment. The foodproof® *Salmonella* Detection kit detects down to 10^{-3} to 10^{-4} cfu/ml in enrichment cultures (depending on the sample preparation kit used: foodproof® ShortPrep I, foodproof® StarPrep One Kit or foodproof® Sample Preparation Kit I, respectively).

References

Quality Control
The foodproof® *Salmonella* Detection Kit is function tested using the LightCycler® 480 System.
5. Supplementary Information

5.1 Ordering Information
In addition to this foodproof® Salmonella Detection Kit BIOTECON Diagnostics is offering a broad range of reagents and services. For a complete overview and for more information, please visit our website at www.bc-diagnostics.com and contact us via email or phone.

5.2 License Notice
The purchase price of this product includes limited, nontransferable rights under U.S. Patent No. 7,687,247 owned by Life Technologies Corporation to use only this amount of the product to practice the claims in said patent solely for activities of the purchaser for bioburden testing, environmental testing, food testing, or testing for genetically modified organisms (GMO) in accordance with the instructions for use accompanying this product. No other rights are conveyed, including no right to use this product for in vitro diagnostic, therapeutic, or prophylactic purposes. Further information on purchasing licenses under the above patent may be obtained by contacting the Licensing Department, Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, CA 92008. Email: outlicensing@lifetech.com.
5.3 Trademarks
foodproof® is a trademark of BIOTECON Diagnostics GmbH.
Other brand or product names are trademarks of their respective holders.

5.4 Contact and Support
If you have questions or experience problems with this or any other product of BIOTECON Diagnostics, please contact our Technical Support staff (for details see www.bc-diagnostics.com). Our scientists commit themselves to providing rapid and effective help. We also want you to contact us if you have suggestions for enhancing our product performance or using our products in new or specialized ways. Such customer information has repeatedly proven invaluable to us and the worldwide research community.

6. Change Index
Version 1, June 2008
First version of the package insert.

Version 2, July 2010
Page 8: NOTE for users of the Agilent Mx3005P instrument added.

Version 3, October 2010
Page 1 and 4: Information about large version of the kit with 480 reactions added.

Version 4, March 2017
License Notice changed.